Nand Kishor Contributor

Nand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc... ...

Full Bio 
Follow on

Nand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc...

3 Best Programming Languages For Internet of Things Development In 2018
193 days ago

Data science is the big draw in business schools
366 days ago

7 Effective Methods for Fitting a Liner
376 days ago

3 Thoughts on Why Deep Learning Works So Well
376 days ago

3 million at risk from the rise of robots
376 days ago

Top 10 Hot Artificial Intelligence (AI) Technologies
293823 views

Here's why so many data scientists are leaving their jobs
78591 views

Want to be a millionaire before you turn 25? Study artificial intelligence or machine learning
72183 views

2018 Data Science Interview Questions for Top Tech Companies
69858 views

Google announces scholarship program to train 1.3 lakh Indian developers in emerging technologies
59520 views

Amazon And NVIDIA Simplify Machine Learning

By Nand Kishor |Email | Oct 28, 2017 | 5217 Views

NVIDIA and Amazon.com have announced new Machine Learning software stacks in the NVIDIA GPU Cloud (NGC), and a new 8 Volta GPU EC2 instance for immediate availability, respectively. While this announcement was completely expected, it is an important milestone along the road to simplifying and lowering the costs of Machine Learning development and deployment for AI projects. When NVIDIA announced the NVIDIA GPU Cloud last May at GTC, I explained in this blog that the purpose was to create a registry of compatible and optimized ML software containers which could then, in theory, run on the cloud of users' choice. That vision has now become a reality, at least for Amazon.com's Amazon Web Services - +0% customers. I expect other Cloud Service Providers to follow soon, given the momentum in the marketplace for the 120 TFLOP Volta GPU's.

Why do you need NVIDIA's GPU Cloud for ML?
As anyone who has delved into Machine Learning can tell you, there are two hurdles that you must clear to build a useful neural network. Assuming you've already prepared a massive trove of tagged data to feed the training process, and have mastered the art of Deep Neural Network design, you'll need hardware. In fact you'll need lots of hardware; expensive hardware you'd have to buy, install, configure, power and maintain. This is where AWS comes in. Its new P3 GPU instances come with 1, 4, or 8 Volta GPUs configured across a fast (25Gb/S) NVLINK2 scalable interconnect, delivering up to a stunning 960 trillion operations per second for serious ML work. That means your training runs will be done in hours instead of days or weeks, getting your AI ready much quicker. It is still not real-time training, but we are getting there.

Great, so you figured out you should just rent the hardware-that's smart. But now you need to select, find, and configure a lot of finicky software. And each software component has to play nice with the myriad of other pieces. So, start with the right Linux OS, configure the correct divers, get the software framework from Git Hub, and don't forget to download the DNN libraries. NO! Not that version! It may not be compatible with everything else you just loaded, and isn't optimized for the GPU you selected. You DID verify that the entire stack is all inter-compatible, right? I mean, each component changes constantly; that's the beauty and curse of open software!

You can see why NVIDIA has invested a lot of time and money to build, configure, optimize, and test all the ML software for each and every major ML Framework-ensuring that it is all self-consistent and optimized for each GPU. Just go to the NGC, create a free account, click on which framework you need, where you want to run it, and NGC will give you an ID which tells AWS what container to load on your shiny new P3 instance. Did I say "free"? Yes, use of the NGC services is free to all.

Machine Learning has gone from an esoteric branch of computer science to the most disruptive technology in the cloud, and Enterprise IT is next. However, it remains difficult for one to get started and obtain fast results. NVIDIA understands this technology better than most, and has realized that the complex and error-prone configuration process is a bottleneck they can solve. They also understand that a solution to this problem will yield consistently optimized performance, reduce confusion and improve satisfaction with its products. In the cloud, AWS has realized that they can get out in front with enterprises and ML startups, by being the first to offer the fastest hardware for machine learning training. In addition AWS has realized it can grease the adoption skids by collaborating with NVIDIA GPU Cloud to simplify software deployment. Others will surely follow, but for now it is clear who the leaders are.

Source: Forbes