Nand Kishor Contributor

Nand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc... ...

Full Bio 
Follow on

Nand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc...

3 Best Programming Languages For Internet of Things Development In 2018
227 days ago

Data science is the big draw in business schools
400 days ago

7 Effective Methods for Fitting a Liner
410 days ago

3 Thoughts on Why Deep Learning Works So Well
410 days ago

3 million at risk from the rise of robots
410 days ago

Top 10 Hot Artificial Intelligence (AI) Technologies
298851 views

Here's why so many data scientists are leaving their jobs
79035 views

Want to be a millionaire before you turn 25? Study artificial intelligence or machine learning
72858 views

2018 Data Science Interview Questions for Top Tech Companies
71643 views

Google announces scholarship program to train 1.3 lakh Indian developers in emerging technologies
59943 views

Google shares developer preview of TensorFlow Lite

By Nand Kishor |Email | Nov 15, 2017 | 6555 Views

Developers were pretty psyched by the announcement at Google I/O back in May that a new version of TensorFlow was being built from the ground up for mobile devices. Today, Google has released a developer preview of TensorFlow Lite.

The software library is aimed at creating a more lightweight machine learning solution for smartphone and embedded devices. The company is calling it an evolution of TensorFlow for mobile and it's available now for both Android and iOS app developers.

The focus here won't be on training models but rather on bringing low-latency inference from machine learning models to less robust devices. In layman's terms this means TensorFlow Lite will focus on applying existing capabilities of models to new data it's given rather than learning new capabilities from existing data, something most mobile devices simply don't have the horsepower to handle.

Google detailed that the big priorities when they designed TF Lite from scratch was to emphasize a lightweight product that could initialize quickly and improve model load times on a variety of mobile devices. TensorFlow Lite supports the Android Neural Networks API.

This isn't a full release, so there's still much more to come as the library takes shape and things get added. Right now Google says TensorFlow Lite is tuned and ready for a few different vision and natural language processing models like MobileNet, Inception v3 and Smart Reply.

"With this developer preview, we have intentionally started with a constrained platform to ensure performance on some of the most important common models," a post authored by the TensorFlow team read. "We plan to prioritize future functional expansion based on the needs of our users. The goals for our continued development are to simplify the developer experience, and enable model deployment for a range of mobile and embedded devices."

Interested developers can dig into the TF Lite documentation and get to obsessing.

Source: TC