Nand Kishor Contributor

Nand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc... ...

Follow on

Nand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc...

Data science is the big draw in business schools
59 days ago

7 Effective Methods for Fitting a Liner
69 days ago

3 Thoughts on Why Deep Learning Works So Well
69 days ago

3 million at risk from the rise of robots
69 days ago

15 Highest Paying Programming Languages Trending
70 days ago

Top 10 Hot Artificial Intelligence (AI) Technologies
158043 views

Here's why so many data scientists are leaving their jobs
63126 views

Want to be a millionaire before you turn 25? Study artificial intelligence or machine learning
60888 views

Google announces scholarship program to train 1.3 lakh Indian developers in emerging technologies
52857 views

2018 Data Science Interview Questions for Top Tech Companies
49488 views

PayThink Artificial intelligence can cut money laundering's 'acceptable losses'

Apr 24, 2017 | 2724 Views

Although the dire need to put a stop to money laundering is well understood, an ongoing negotiation regarding what amount of money laundering is an acceptable cost of doing business plagues regulators and those inside who are responsible for the detection and prevention of financial crimes.

Should we judge those tasked with stopping financial crimes for possibly allowing an acceptable number of money laundering transactions? Unfortunately, the teams in financial institutions in charge of thwarting financial crimes are hamstrung by limited time and outdated technological resources.

Change however, is happening now. Over the last several years, advancements in data science, including artificial intelligence (AI), machine learning and big data management, promise to stifle money laundering making the accurate evaluation of all transactions a viable reality.

The utilization of AI and machine learning dramatically improves the effectiveness of money laundering investigations, providing the with the ability to efficiently identify all money laundering transactions, regardless of the dollar amount.

The technology can improve "acceptable costs." Financial institutions and issuers set dollar, volume and velocity thresholds for transaction monitoring. Above these thresholds, they attempt to screen all transactions for money laundering. Below them, they accept that some money laundering, terrorist financing, and other financial crimes might go unaddressed.

This Above the Line, Below the Line (ATLBTL) practice functions on a risk-based transaction monitoring process by which not all transactions are screened for possible money laundering and other financial crimes concerns.

The percentage allowed to pass unscreened is determined by institutioISO and agent, AML, Artificial intelligence , Digital payments, Cross border paymentsns and federal regulators that work with them to ensure that they comply with AML regulatory guidelines. Industry estimates state these allowances run between three and 10 percent of all ??below the line" (BTL) transactions. Institutions and regulators conduct periodic assessments to ascertain if the ATLBTL thresholds are functioning within their established risk tolerances.

Regulations on this topic continue to be rolled out, at the state, national and global levels. These include NYSDFS 504, FinCEN Fifth Pillar and the EU Funds Transfer Regulation. Despite these regulatory efforts, turning the tables on financial criminals requires more relentless, penetrating scrutiny.

Given technological advancements, ATLBTL is one example of the many compromises financial crimes teams no longer should have to make. AI for AML is built for the purpose of complementing transaction monitoring systems, increasing investigative efficiency, driving out false positives, and catching the false negatives that embody financial and reputational risk. With trillions in laundered money still going through banking systems, AI offers the opportunity to move toward a new standard.


Source: Paymentsource
Nand Kishor Contributor

Nand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc... ...

Full Bio 
Follow on

Nand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc...

Data science is the big draw in business schools
59 days ago

7 Effective Methods for Fitting a Liner
69 days ago

3 Thoughts on Why Deep Learning Works So Well
69 days ago

3 million at risk from the rise of robots
69 days ago

15 Highest Paying Programming Languages Trending
70 days ago

Top 10 Hot Artificial Intelligence (AI) Technologies
158043 views

Here's why so many data scientists are leaving their jobs
63126 views

Want to be a millionaire before you turn 25? Study artificial intelligence or machine learning
60888 views

Google announces scholarship program to train 1.3 lakh Indian developers in emerging technologies
52857 views

2018 Data Science Interview Questions for Top Tech Companies
49488 views