Nand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc... ...

Full BioNand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc...

3 Best Programming Languages For Internet of Things Development In 2018

341 days ago

Data science is the big draw in business schools

514 days ago

7 Effective Methods for Fitting a Liner

524 days ago

3 Thoughts on Why Deep Learning Works So Well

524 days ago

3 million at risk from the rise of robots

524 days ago

Top 10 Hot Artificial Intelligence (AI) Technologies

310350 views

Here's why so many data scientists are leaving their jobs

80736 views

2018 Data Science Interview Questions for Top Tech Companies

76515 views

Want to be a millionaire before you turn 25? Study artificial intelligence or machine learning

75990 views

Google announces scholarship program to train 1.3 lakh Indian developers in emerging technologies

61338 views

### Machine Learning Crash Course: Part 1 Tutorial

**Introduction, Regression/Classification, Cost Functions, and Gradient Descent**

**Machine learning (ML) **has received a lot of attention recently, and not without good reason. It has already revolutionized fields from image recognition to healthcare to transportation. Yet a typical explanation for machine learning sounds like this:

*"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."*

Not very clear, is it? This post, the first in a series of ML tutorials, aims to make machine learning accessible to anyone willing to learn. We've designed it to give you a solid understanding of how ML algorithms work as well as provide you the knowledge to harness it in your projects.

**So what is Machine Learning?**

At its core, machine learning is not a difficult concept to grasp. In fact, the vast majority of machine learning algorithms are concerned with just one simple task: drawing lines. In particular, machine learning is all about drawing lines through data. What does that mean? Let's look at a simple example.

**Classification**

Let's say you're a computer with a collection of apple and orange images. From each image you can infer the color and size of a fruit, and you want to classify the images as either an image of an apple or an orange. The first step in many** machine learning algorithms** is to obtain **labeled training data**. In our example, this means getting a large number of images of fruit each labeled as either being an apple or an orange. From these images, we can extract the color and size information and then see how they correlate with being an apple or an orange. For example, graphing our labeled training data might look like something this:

The red x's are labeled apples and the orange x's are labeled oranges. As you'll probably notice there's a pattern in the data. Apples seem to congregate on the left side of the graph because they're mostly red, and oranges seem to congregate on the right side because they're mostly orange. We want our algorithm to learn these types of patterns.

For this particular problem, our goal is to create an algorithm that draws a line between the two labeled groups, called a **decision boundary.** The simplest decision boundary for our data might look something like this:

Just a straight line between the apples and the oranges. However, much more complicated machine learning algorithms may end up drawing much more complicated decision boundaries such as this:

Our assumption is that the line we've drawn to distinguish an apple image from an orange image in our labeled training data above will be able to distinguish an apple from an orange in any image.** In other words, by giving our algorithm examples of apples and oranges to learn from, it can generalize its experience to images of apples and oranges that it has never encountered before.** For instance, if we were given an image of a fruit, represented by the blue X below, we could classify it as an orange based on the decision boundary we drew:

This is the power of machine learning. We take some training data, run a machine learning algorithm which draws a decision boundary on the data, and then extrapolate what we've learned to completely new pieces of data.

Of course, distinguishing between apples and oranges is quite a mundane task. However, we can apply this strategy to much more exciting problems, such as classifying tumors as malignant or benign, marking emails as spam or not spam, or analyzing fingerprints for security systems. This type of machine learning-drawing lines to **separate data**-is just one subfield of machine learning, called **classification**. Another subfield, **called regression**, is all about drawing lines that describe data.

**Regression**

Say we have some labeled training data. In particular, let's say we have the price of various houses versus their square footage. If we visualize the information as a graph, it looks like this:

Each of the X's represents a different house with some price and some square footage. Notice that although there is some variation in the data (in other words, each data point is a bit scattered), there is also a pattern: as houses get bigger, they also become more expensive. We want our algorithm to find and use this pattern to predict house prices based on house size.

Just by looking at the training data intuitively we can see that there is a diagonal strip in the graph that most houses seem to land on. We can generalize this idea and say that all houses will have a high probability of being on the diagonal cluster of data points. For example, there is a pretty high chance of a house being at the green X in the graph below and a pretty low chance that a house would be at the red X in the graph below.

Now we can generalize even more and ask, for any given square footage, how much will a house be worth? Of course, it would be very hard to get an exact answer. However, an approximate answer is much easier to get. To do this, we draw a line through the cluster of data, as close as possible to each data point. This line, called a predictor, predicts the price of a house from its square footage. For any point on the predictor, there is a high chance that a house of that square footage has that price. In a sense, we can say that the predictor represents an "average" of house prices for a given footage.

The predictor doesn't necessarily have to be linear. It can be any type of function, or model, you can imagine-quadratic, sinusoidal, and even arbitrary functions will work. However, using the most complex model for a predictor won't always work; different functions work better for different problems, and it's up to the programmer to figure out what kind of model to use.

Looking back at our model for house price we could ask: why limit ourselves to just one input variable? Turns out we can consider as many types of information as we want, such as the cost of living in the city, condition, building material, and so on. For example, we can plot the price against the cost of living in the house's location and its square footage on a single graph like this, where the vertical axis plots price, and the two horizontal axes plot square footage and cost of living:

In this case we can again fit a predictor to the data. But instead of drawing a line through the data we have to draw a plane through the data because the function that best predicts the housing price is a function of two variables.

So we've seen examples of one and two input variables, but many machine learning applications take into account hundreds and even thousands of variables. Although humans are regrettably unable to visualize anything higher than three dimensions, the same principles we just learned will apply to those systems.

**The Predictor**

As we mentioned earlier, there are many different types of predictors. In our example with house prices, we used a linear model to approximate our data. The mathematical form of a linear predictor looks something like this:

**f(x)=c ^{n}x^{n}+cnâ??1xnâ??1+...+c1x1+c0**

Each x represents a different input feature, such as square footage or cost of living, and each c is called a parameter or a weight. The greater a particular weight is, the more the model considers its corresponding feature. For example, square footage is a good predictor of house prices, so our algorithm should give square footage a lot of consideration by increasing the coefficient associated with square footage. In contrast, if our data included the number of power outlets in the house, our algorithm will probably give it a relatively low weight because the number of outlets doesn't have much to do with the price of a house.

In our example of predicting house prices based on square footage, since we're only considering one variable our model only needs one input feature, or just one x: Read More