Nand Kishor Contributor

Nand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc... ...

Full Bio 
Follow on

Nand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc...

3 Best Programming Languages For Internet of Things Development In 2018
368 days ago

Data science is the big draw in business schools
541 days ago

7 Effective Methods for Fitting a Liner
551 days ago

3 Thoughts on Why Deep Learning Works So Well
551 days ago

3 million at risk from the rise of robots
551 days ago

Top 10 Hot Artificial Intelligence (AI) Technologies
312354 views

Here's why so many data scientists are leaving their jobs
81132 views

2018 Data Science Interview Questions for Top Tech Companies
77559 views

Want to be a millionaire before you turn 25? Study artificial intelligence or machine learning
76809 views

Google announces scholarship program to train 1.3 lakh Indian developers in emerging technologies
61713 views

Inside Salesforce's Quest To Bring Artificial Intelligence To Everyone

By Nand Kishor |Email | Aug 4, 2017 | 6033 Views

Optimus Prime-the software engine, not the Autobot overlord-was born in a basement under a West Elm furniture store on University Avenue in Palo Alto. Starting two years ago, a band of artificial-intelligence acolytes within Salesforce escaped the towering headquarters with the goal of crazily multiplying the impact of the machine learning models that increasingly shape our digital world-by automating the creation of those models. As shoppers checked out sofas above their heads, they built a system to do just that.

They named it after the Transformers leader because, as one participant recalls, "machine learning is all about transforming data." Whether the marketing department thought better of it, or the rights weren't available, the Transformers tie-in didn't make it far out of that basement. Instead, Salesforce licensed the name of a different world-transforming hero-and dubbed its AI program Einstein.

The pop culture myths the company has invoked for its AI effort-the robot leader; the iconic genius-represent the kind of protean powers the technology is predicted to attain by both its most ardent hypesters and its gloomiest critics. Salesforce stands firmly on the hype side of this divide-no one cheers louder, especially not in AI promotion. But the company's actual AI program is more pragmatic than messianic or apocalyptic.

This past March, Salesforce flipped a switch and made a big chunk of Einstein available to all of its users. Of course it did. Salesforce has always specialized in putting advanced software into everyday businesses' hands by moving it from in-house servers to the cloud. The company's original mantra was "no software." Its customers wouldn't have to purchase and install complex programs and then pay to maintain and upgrade them-Salesforce would take care of all that at its data centers in the cloud. That seems obvious now, but when Salesforce launched in 1999 it sounded as revolutionary as AI does to us today.

Talkin' revolution has been good for Salesforce. The firm now has 26,000 employees worldwide, and it has pasted its name on the city's new tallest skyscraper. Its founder, Marc Benioff, is a philanthropist who has put his own name on hospitals and foundations. Despite all this, in its own world of B2B (business-to-business) software, Salesforce still holds onto its scrappy upstart self-image.

So naturally, when the AI trend took off, the people inside the company and the experts they recruited coalesced around an idealistic mission. The team set out to create "AI for everyone"-to make machine learning affordable for companies who've been priced out of the market for experts. They promised to "democratize" AI.

That sounds a bit risky! Can we trust the people with such awesome powers? (Cut to chorus of Elon Musk, Stephen Hawking, and Nick Bostrom singing a funeral mass for humanity.) But what Salesforce has in mind isn't all that subversive. Its Einstein isn't the guy who overthrew centuries of orthodox physics and enabled the H-bomb; he's just a cute brainiac who can answer all your questions. Salesforce's populist slogan is simply about making a new generation of technology accessible to mere mortals. Other, bigger companies-Microsoft, Google, Amazon-may outgun Salesforce in sheer research muscle, but Salesforce promises to put a market advantage into its customers' hands right now. That begins with the mundane business of ranking lists of sales leads.

"What do I work on next?" Most of us ask that question many times every day. (And too many of us end up answering, "Check Facebook" or "See if Trump tweeted again!") To-do apps and personal productivity systems offer some help, but often turn into extra work themselves. What if artificial intelligence answered the "next task" question for you?

That's what the Salesforce AI team decided to offer as Einstein's first broadly available, readymade tool. Today Salesforce offers all kinds of cloud-based services for customer service, ecommerce, marketing and more. But at its root, it's a workaday CRM (customer relationship management) product that salespeople use to manage their leads. Prioritizing these opportunities can get complicated fast and takes up precious time. So the Einstein Intelligence module-a little add-on column at the far right of the basic Salesforce screen-will do it for you, ranking them based on, say, "most likely to close." For marketers, who also make up a big chunk of Salesforce customers, it can take a big mailing list and sort individual recipients by the likelihood that they'll open an email.

But wait, what qualifies this as artificial intelligence? Anyone can tell a spreadsheet to sort a list based on different factors. The machine learning difference is simple but profound: The program studies the history of the data and figures out for itself which factors best predict the future-and then it keeps adjusting its model based on new information over time. The more data, the subtler and more powerful the answers, which is why Einstein can work not only from columns of basic Salesforce data but also from information like sales email threads that it parses and images that it reads.

Salesforce director of product marketing Ally Witherspoon uses the example of a solar-panel sales outfit using the machine learning tool to discover that a key factor in predicting a customer's chances of saying "yes" is whether the house's roof is pitched in a solar-friendly way. Further down the road, a different deep learning-style program could check satellite photos of different properties and automatically tag homes by roof geometry.

This roof info might start out as a major ingredient in how the machine learning program sorts its list-and, in one of Einstein's nifty design flourishes, users can click to reveal which factors shaped each priority scoring. If users are going to trust the tool, that kind of transparency helps. But what happens when all the sales reps have learned to ignore the folks whose roofs are flat?

As Salesforce President of Technology Srini Tallapragada explains, "At a certain point, a column of data can become useless-it becomes a best practice, so it loses predictive value. The model has to keep changing."

That is cool. It's also pretty standard-issue machine learning tech for 2017. But to get it up and running at your company, you'd need to spend a ton of time and effort building a model that understands what's important in your business, and then cleaning up your data to get good results. That's the reason your bank, your insurance company, and your doctor aren't all using AI already, explains Vitaly Gordon, who left LinkedIn in 2014 to become one of Salesforce's machine learning pioneers. Ironically, for a field predicated on the ideas of automating human work, "It's an access to people problem," Gordon says. These companies probably know more about you than Facebook or Google, but they can't compete for the data scientists who know how to mine the mountains of information.

Right now, the demand for these experts is like the run on internet routing gurus in the '90s or SEO experts in the 2000s-even crazier than the Bay Area housing market. If you're the likes of Facebook, Google, or Amazon, you can hire the field's leading lights and put them to work optimizing algorithms and inventing new ways of serving billions of customers with more artificial intelligence. If you're anyone else, you're pretty much screwed. You'll either pay a fortune to a giant consultancy to custom-build a machine learning system, or you'll watch from the sidelines. What Salesforce is selling is the idea that if your business is in its hands, you're going to get the benefit of AI without fighting for that talent to customize it for you. It all comes in the box-or would, if there were a box. (Our metaphors need to keep changing, too.)

Salesforce has 150,000 customers, most of whom have customized the system for their own needs and kinds of data. The Salesforce "multi-tenant" approach means that each company's data is kept separately, and when a customer adds a custom data field, Salesforce doesn't even know the nature of the information.
To bolt Einstein onto each of these businesses' unique software configurations, Salesforce's AI braintrust realized that it needed a new approach. "There aren't enough data scientists in the world to build all the predictive models we need," says John Ball, Salesforce Einstein's general manager. Just as AT&T realized a century ago that if it stuck with manual operators, everyone in the US would end up sitting at a switchboard, Salesforce saw that automation was inevitable.

This is where Optimus Prime comes in. (Inside Salesforce, developers still use that name.) It's the system that automates the creation of machine learning models for each Salesforce customer so that data scientists don't have to spend weeks babysitting each new model as it is born and trained to deliver good answers. Optimus Prime is, in a sense, an AI that builds AIs-and a tool whose recursive nature is both beautiful and unsettling.

"Normally a data scientist studying one problem might take several weeks to a month to come up with a good model for a problem," explains Shubha Nabar, Salesforce's director of data science. "With this automated layer, it takes just a couple of hours."

Today, the fruits of Optimus Prime are chiefly available in neatly packaged features of the Salesforce cloud applications that customers can turn on by checking a box. Next, Salesforce plans to open up the technology by steps. First, users will be able to extend Einstein's capabilities more widely to more of their customized data. Then, a point-and-click interface will let non-programmers build custom apps for users. "We want to allow an admin-not a data scientist, not even really a developer-to predict any field in any object," Ball says. Even further down the line, Salesforce intends to expose more of the guts of its machine learning system for external developers to play with. At that point, it will be competing directly with all the AI heavyweights, like Google and Microsoft, to dominate the business market.

Salesforce recently released research that claims AI's impact through CRM software alone will add over $1 trillion to GDPs around the globe and create 800,000 new jobs. The company has gone all-in on AI since it first announced Einstein in 2016. Benioff said then, "AI is the next platform-all future applications, all future capabilities for all companies will be built on AI."

Benioff even told analysts on a quarterly earnings call that he uses Einstein at weekly executive meetings to forecast results and settle arguments: "I will literally turn to Einstein in the meeting and say, 'OK, Einstein, you've heard all of this, now what do you think?' And Einstein will give me the over and under on the quarter and show me where we're strong and where we're weak, and sometimes it will point out a specific executive, which it has done in the last three quarters, and say that this executive is somebody who needs specific attention."

Source: Wired