Here are some machine learning books which will give teach you an in-depth analysis of machine learning algorithms.

Machine Learning for Hackers: Case Studies and Algorithms to Get You Started 1st Edition by Drew Conway

If you're an experienced programmer interested in crunching data, this book will get you started with machine learning-a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.

Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research.

- Develop a Bayesian classifier to determine if an email is spam, based only on its text
- Use linear regression to predict the number of page views for the top 1,000 websites
- Learn optimization techniques by attempting to break a simple letter cipher
- Compare and contrast U.S. Senators statistically, based on their voting records
- Build a whom to follow recommendation system from Twitter data

Machine Learning: An Algorithmic Perspective (Chapman & Hall/Crc Machine Learning & Pattern Recognition) Paperback Import, 8 Apr 2009 by Stephen Marsland

Traditional books on machine learning can be divided into two groups รข?? those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that makeup machine learning methods but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.

Theory Backed up by Practical Examples

The book covers neural networks, graphical models, reinforcement learning, evolutionary algorithms, dimensionality reduction methods, and the important area of optimization. It treads the fine line between adequate academic rigor and overwhelming students with equations and mathematical concepts. The author addresses the topics in a practical way while providing complete information and references where other expositions can be found. He includes examples based on widely available datasets and practical and theoretical problems to test understanding and application of the material. The book describes algorithms with code examples backed up by a website that provides working implementations in Python. The author uses data from a variety of applications to demonstrate the methods and includes practical problems for students to solve.

Machine Learning 1st Edition by Tom M. Mitchell

This book covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. The book is intended to support upper-level undergraduate and introductory level graduate courses in machine learning.

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (The MIT Press) 1st Edition, Kindle Edition by John D. Kelleher

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

Understanding Machine Learning: From Theory to Algorithms Hardcover 19 May 2014 by Shai Shalev-Shwartz

Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics, the book covers a wide array of central topics unaddressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for advanced undergraduates or beginning graduates, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering.

Source: HOB