Nand Kishor Contributor

Nand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc... ...

Full Bio 
Follow on

Nand Kishor is the Product Manager of House of Bots. After finishing his studies in computer science, he ideated & re-launched Real Estate Business Intelligence Tool, where he created one of the leading Business Intelligence Tool for property price analysis in 2012. He also writes, research and sharing knowledge about Artificial Intelligence (AI), Machine Learning (ML), Data Science, Big Data, Python Language etc...

3 Best Programming Languages For Internet of Things Development In 2018
420 days ago

Data science is the big draw in business schools
593 days ago

7 Effective Methods for Fitting a Liner
603 days ago

3 Thoughts on Why Deep Learning Works So Well
603 days ago

3 million at risk from the rise of robots
603 days ago

Top 10 Hot Artificial Intelligence (AI) Technologies
316830 views

Here's why so many data scientists are leaving their jobs
82080 views

2018 Data Science Interview Questions for Top Tech Companies
79917 views

Want to be a millionaire before you turn 25? Study artificial intelligence or machine learning
77997 views

Google announces scholarship program to train 1.3 lakh Indian developers in emerging technologies
62709 views

Top 10 Must Read Books for Data Scientists on Python

By Nand Kishor |Email | Mar 25, 2018 | 26268 Views

If you are looking to learn python than what could be a better source than taking help from books written by professionals? In order to help you with your search we have created a list of best book for python data science, so that you don't have to wait and based on your requirements you can start your learning process with best books to learn python:

Top Must Read Books for Data Scientists on Python
S.No.Books for Data Scientists on PythonAuthor Name
1.Mastering Python for Data ScienceSamir Madhavan
2.Python for Data Analysis W McKinney
3.Introduction to Device Studying with PythonAndreas Muller and Sarah Guido
4.Python Device LearningSebastian Raschka
5.Advanced Device Studying with PythonJohn Hearty
6.Programming Combined IntelligenceToby Segaran
7.Think Stats: Probability and Statistics for ProgrammersAllen B. Downey
8.Probabilistic Development & Bayesian Methods for HackersCam Davidson-Pilon
9.Understanding Machine Learning: From Theory to AlgorithmsShai Shalev-Shwartz and Shai Ben-David
10.Think Stats 2Allen Downey

























1.) Mastering Python for Data Science
 
This information is published by Samir Madhavan. This book begins with an introduction to data components in Numpy & Pandas and provides useful information of publishing data from various resources into these components. You will figure out how to perform linear algebra in Python and make analysis by using inferential statistics. Later, the book takes onto the innovative ideas like developing a recommendation engine, high-end visualization using Python, ensemble modeling etc. If you are a complete newbie and are looking for a book to learn python, then this book is one of the best book for python beginners.











2.) Python for Data Analysis
 
Want to begin with data analysis with Python? Get your hands on this data analysis information by W McKinney, the main writer of Pandas library. There isn't any online course as extensive as this book. This book includes each and every aspect of data analysis from manipulating, processing, cleaning, visualization and crunching data in Python. If you are new to data science python, it's a must read for you. It's power-packed with case studies from various domains. This book is ranked amongst our best books to learn python due to the extensive knowledge it provides to python learners.











3.) Introduction to Device Studying with Python
 
This book is published by Andreas Muller and Sarah Guido. It's intended to help newbies get started with machine learning and is recommended as one of the best book for python beginners. It teaches to build ML designs in python scikit-learn from scratch. It assumes no prior knowledge; hence it's best suitable to individuals with no idea on python or ML information. In addition, it also includes innovative means of design assessment and parameter tuning, methods of working with text-data, written text -specific handling methods etc.












4.) Python Device Learning
 
This book is published by Sebastian Raschka. It's one of the best book's I've found on ML in Python. The writer describes every crucial detail we need to know about machine learning. He takes a stepwise strategy in describing the ideas reinforced by various illustrations. This information cover subjects such as neural networks, clustering, regression, classification, ensemble etc. It's the best book on python if you want to Master ML on python.














5.) Building Device Studying Systems with Python
 
This book is published by Willi Richert, Luis Pedro Coelho. In this book the writers have selected a direction of, starting with basic concepts, describing ideas through tasks and finishing on a higher note. Therefore, I'd recommend this secrets and techniques for newbie python machine learning lovers. It includes subjects like image processing, recommendation engine, sentiment analysis etc. It's clear and understandable and fast to apply written text information. The book is recommended as one of the best book for python data science for beginners because it takes learners through step by step learning of python and is easy to understand.










6.) Advanced Device Studying with Python
 
This book is published by John Hearty. It's a definite read for every machine learning lovers. It allows you to increase above basic concepts of ML methods and jump into unsupervised methods, deep belief networks, Auto encoders, feature engineering methods, ensembles etc. It's definitely a book you would want to read to improve your positions in machine learning contests. The writer sets equivalent focus on theoretical as well realistic factors of machine learning. If you are not a newbie and are looking for a best book on python data science for gaining an in-depth knowledge of ML methods and machine learning then advanced device studying with python will definitely enhance your knowledge the way you want it to.










7.) Programming Combined Intelligence
 
This book is published by Toby Segaran. With an exciting headline, this book was created introducing you to several ML methods such as SVM, trees, clustering, optimization etc using exciting illustrations and used cases. This is information is most effective for individuals new to ML in python. Python, known for its amazing ML collections & support should allow you to understand these ideas quicker. Also, the sections consist of exercises for practice to help you create better knowing.














8.) Think Stats: Probability and Statistics for Programmers
 
Think Stats is an introduction to Probability and Statistics for Python programmers written by Allen B. Downey. 
Think Stats focuses on simple methods you can use to discover actual data sets and answer exciting questions. The information provides a research study using data from the Nationwide Institutions of Health. Visitors are motivated to work on a job with actual datasets. This is one of the best books for python because it helps learners, learn through practical work i.e. by working on actual data sets.









9.) Probabilistic Development & Bayesian Methods for Hackers
 
An introduction to Bayesian methods and probabilistic programming from a computation/understanding-first, mathematics-second perspective. This book is authored by Cam Davidson-Pilon.

The Bayesian method is the natural way of inference, yet it is invisible from readers behind sections of slowly, statistical research. The common written text on Bayesian inference includes two to three sections on probability concept, then goes into what Bayesian inference is. Unfortunately, due to statistical intractability of most Bayesian designs, the audience is only shown simple, synthetic illustrations. This can leave the user with a so-what feeling about Bayesian inference. In fact, this was the writer's own before viewpoint.




10.) Understanding Machine Learning: From Theory to Algorithms
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
Shai Shalev-Shwartz and Shai Ben-David authored an amazing book Understanding Machine Learning: From Theory to Algorithms'.

Machine learning is one of the quickest growing areas of information technology, with far-reaching programs. The aim of this text is introducing machine learning, and the algorithmic paradigms it offers, in a principled way. The information provides a theoretical account of basic concepts actual machine learning and the statistical derivations that convert these concepts into realistic methods. Following an exhibition of basic concepts, the novel includes a wide range of main subjects unaddressed by past books. Included in this are a conversation of the computational complexness of learning and the ideas of convexity and stability; important algorithmic paradigms such as stochastic slope nice, sensory systems, and organized outcome learning; and growing theoretical ideas such as the PAC-Bayes strategy and compression-based range.
























































Conclusion
The above list of books for learning python is combination of best books on python that cover different aspects of python, such as python for beginners, intermediates and experts, so based on your requirements choose one of the best books on python from the above list and start learning.

Source: Digital Vidya